Quantum Control of a Single Qubit

نویسندگان

  • Agata M. Brańczyk
  • Paulo E. M. F. Mendonça
  • Alexei Gilchrist
  • Andrew C. Doherty
  • Stephen D. Bartlett
چکیده

Measurements in quantum mechanics cannot perfectly distinguish all states and necessarily disturb the measured system. We present and analyse a proposal to demonstrate fundamental limits on quantum control of a single qubit arising from these properties of quantum measurements. We consider a qubit prepared in one of two non-orthogonal states and subsequently subjected to dephasing noise. The task is to use measurement and feedback control to attempt to correct the state of the qubit. We demonstrate that projective measurements are not optimal for this task, and that there exists a non-projective measurement with an optimum measurement strength which achieves the best trade-off between gaining information about the system and disturbing it through measurement back-action. We study the performance of a quantum control scheme that makes use of this weak measurement followed by feedback control, and demonstrate that it realises the optimal recovery from noise for this system. We contrast this approach with various classically inspired control schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit

We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...

متن کامل

Decoherence effects on quantum Fisher information of multi-qubit W states

Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...

متن کامل

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

Super operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir

In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...

متن کامل

Optimal generation of single-qubit operation from an always-on interaction by algebraic decoupling

We present a direct algebraic decoupling approach to generate arbitrary single-qubit operations in the presence of a constant interaction by application of local control signals. To overcome the difficulty of undesirable entanglement generated by the untunable interaction, we use an algebraic approach to decouple the two-qubit Hamiltonian into two single-qubit Hamiltonians and the desired singl...

متن کامل

Isolating a Single Qubit in a Multi Qubit System

Quantum computing, a whole new paradigm to computing, is based on using Quantum Mechanics for computation. The basic element in a quantum computer is a “qubit” which is a two-state physical system. Unlike a classical bit which can exist in one of two states, 0 or 1, a qubit can not only exist in its two basis states, but also in any linear combination of these states. A quantum computer compris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006